Compare commits

...

2 Commits

Author SHA1 Message Date
Clemens Klug 75f41fb9f5 WIP snapshot 2017-11-15 18:39:42 +01:00
Clemens Klug b40efa4bbb WIP snapshot 2017-11-13 13:52:57 +01:00
7 changed files with 307 additions and 80 deletions

View File

@ -51,7 +51,7 @@ __MAPPING__ = {
StoreRender
],
SimulationOrderAnalyzer: [
JSONRender,
#JSONRender,
# SimulationOrderRender,
SimulationGroupRender
]

View File

@ -50,7 +50,7 @@ class ResultStore:
:return:
"""
result = []
for key in self.store:
for key in sorted(self.store):
result += self.store[key]
return result

View File

@ -195,6 +195,7 @@ class ActivityMapper(Analyzer):
board_data = get_board_data(self.settings.source, self.instance_config_id, entry["sequence_id"],
entry["board_id"])
entry["extra_data"] = board_data
entry["extra_data"]["activity_type"] = self.last_board_type
entry['coordinate'] = self.new_coordinate()
self.timeline.append(entry)
return False
@ -236,6 +237,8 @@ class ActivityMapper(Analyzer):
self.track['properties'].update(props)
self.tracks.append(self.track)
self.track = self.new_track(props['end_timestamp'])
if self.last_coordinate:
self.track['coordinates'].append(self.last_coordinate)
def new_track(self, timestamp):
return {"type": "LineString", "coordinates": [], "properties": {'start_timestamp': timestamp}}

View File

@ -185,7 +185,13 @@ class SimulationOrderRender(Render):
class SimulationGroupRender(Render):
def render(self, results: List[Result], name=None):
data = [r.get() for r in self.filter(results)]
#data = [r.get() for r in self.filter(results)]
data = []
for r in self.filter(results):
raw = r.get()
if len(raw) < 6:
raw = [0] + raw
data.append(raw)
print(name, len(data))
graph_plot(list(data), ylabel="simulation retries", title="sequential simulation retries", rotation=None, name=name)
#graph_fit(list(data), name=name)

View File

@ -14,6 +14,7 @@
"analyzers": {
"analyzers": [
"SimulationCategorizer",
"SimulationOrderAnalyzer",
"ActivityMapper"
]
},

View File

@ -63,17 +63,18 @@ if __name__ == '__main__':
# "fec57041458e6cef98652df625", ]
log_ids = []
# with open("/home/clemens/git/ma/test/filtered") as src:
with open("/home/clemens/git/ma/test/filtered") as src:
for line in src:
line = line.strip()
log_ids.append(line)
store: ResultStore = ResultStore()
for log_id in log_ids:
for analysis in process_log(log_id, settings):
log.info("* Result for " + analysis.name())
# print(analysis.result())
# print(analysis.render())
analysis.result(store)
if False:
with open("/home/clemens/git/ma/test/filtered_5_actions") as src:
for line in src:
line = line.strip()
log_ids.append(line)
store: ResultStore = ResultStore()
for log_id in log_ids:
for analysis in process_log(log_id, settings):
log.info("* Result for " + analysis.name())
# print(analysis.result())
# print(analysis.render())
analysis.result(store)
if False:
for r in get_renderer(analyzers.LocomotionActionAnalyzer):
r().render(store.get_all())
@ -120,8 +121,10 @@ if __name__ == '__main__':
writer.writerow(line)
if True:
#json.dump(store.serializable(), open("new.json", "w"), indent=1)
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
from collections import defaultdict
import matplotlib.pyplot as plt
from util.meta_temp import CONFIG_NAMES
keys = [
"simu",
@ -130,81 +133,294 @@ if __name__ == '__main__':
"audio",
"video",
"other",
"map"
"map",
# "error"
]
import matplotlib.pyplot as plt
#results = []
places = defaultdict(list)
for log in store.get_all():
result = defaultdict(lambda: 0)
for i in log.get()['track']:
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result[i['properties']['activity_type']] += duration
print(json.dumps(result, indent=4))
total = sum(result.values())
print(total)
percentage = defaultdict(lambda :0)
minutes = defaultdict(lambda:0)
for i in result:
percentage[i]= result[i]/total
minutes[i] = result[i]/60_000
print(json.dumps(percentage,indent=4))
if not 'error' in result:
#places[log.get()['instance']].append(percentage)
places[log.get()['instance']].append(minutes)
def get_data(store, relative_values=True, sort=True, show_errors=False):
places = defaultdict(list)
for place in places:
places[place] = sorted(places[place], key=lambda item:item['map'])
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: 0)
for i in log.get()['track']:
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result[i['properties']['activity_type']] += duration
print(json.dumps(result, indent=4))
total = sum(result.values())
print(total)
percentage = defaultdict(lambda: 0)
minutes = defaultdict(lambda: 0)
for i in result:
percentage[i] = result[i] / total
minutes[i] = result[i] / 60_000
print(json.dumps(percentage, indent=4))
if not 'error' in result or show_errors:
if relative_values:
places[log.get()['instance']].append(percentage)
else:
places[log.get()['instance']].append(minutes)
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
return places
dummy = [0]*len(keys)
results = []
sites = []
from util.meta_temp import CONFIG_NAMES
for i in places:
for j in places[i]:
ordered = []
from shapely.geometry import LineString
from shapely.ops import transform
from functools import partial
import pyproj
def calc_distance(coordinates):
track = LineString(coordinates)
project = partial(
pyproj.transform,
pyproj.Proj(init='EPSG:4326'),
pyproj.Proj(init='EPSG:32633'))
return transform(project, track).length
whitelist = ['16fc3117-61db-4f50-b84f-81de6310206f', '5e64ce07-1c16-4d50-ac4e-b3117847ea43',
'90278021-4c57-464e-90b1-d603799d07eb', 'ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771']
def get_data_distance(store, relative_values=True, sort=True, show_errors=False):
places = defaultdict(list)
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: 0)
for i in log.get()['track']:
coords = i['coordinates']
if len(coords) > 1:
distance = calc_distance(coords)
result[i['properties']['activity_type']] += distance
total = sum(result.values())
percentage = defaultdict(lambda: 0)
for i in result:
if not total == 0:
percentage[i] = result[i] / total
if not 'error' in result or show_errors:
if relative_values:
places[log.get()['instance']].append(percentage)
else:
places[log.get()['instance']].append(result)
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
return places
def get_all_data(store, sort=False, relative=True):
places = defaultdict(list)
simu_distribution = defaultdict(lambda: 0)
#divisiors = {"time":60_000, "space":1000000}
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: defaultdict(lambda: 0))
for i in log.get()['track']:
coords = i['coordinates']
if len(coords) > 1:
distance = calc_distance(coords)
else:
distance = 0.0
result["space"][i['properties']['activity_type']] += distance
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result["time"][i['properties']['activity_type']] += duration
total_space = sum(result["space"].values())
total_time = sum(result["time"].values())
percentage = defaultdict(lambda: defaultdict(lambda: 0))
total = defaultdict(lambda: defaultdict(lambda: 0))
for i in result["space"]:
if not total_space == 0:
percentage[i]["space"] = result["space"][i] / total_space
else:
percentage[i]["space"] = 0
if not total_time == 0:
percentage[i]["time"] = result["time"][i] / total_time
else:
percentage[i]["time"] = 0
for t in ("space","time"):
#total[i][t] += (result[t][i] / divisiors[t])
total[i][t] += result[t][i]
print(percentage)
if not 'error' in result:
if relative:
value = percentage
else:
value = total
places[log.get()['instance']].append(value)
simus = defaultdict(lambda :0)
for item in log.get()['boards']:
if item["extra_data"]["activity_type"]=="simu":
simus[item["board_id"]] += 1
simu_distribution[len(simus)]+=1
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map']['time'])
print(simu_distribution)
return places
def stack_data(keys, places, type="time"):
divisiors = {"time": 60_000, "space": 1000}
divisiors = {"time": 1, "space": 1}
dummy = [0] * len(keys)
results = []
sites = []
for i in sorted(places):
if not i in whitelist:
continue
for j in places[i]:
ordered = []
for k in keys:
if k in j:
ordered.append(j[k][type]/divisiors[type])
else:
ordered.append(0)
print(sum(ordered))
if sum(ordered) > 0.9:
#print(sum(ordered), 1-sum(ordered))
#if sum(ordered)<1:
# ordered[-2] = 1-sum(ordered[:-2], ordered[-1])
results.append(ordered)
results.append(dummy)
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
return results, sites
def plot_data(places, keys):
results, sites = stack_data(keys, places)
dpi=86.1
plt.figure(figsize=(1280/dpi, 720/dpi))
size = len(results)
print("{} elements total".format(size))
ind = np.arange(size)
width = 1
# print(results)
data = list(zip(*results))
# print(data)
lines = []
bottom = [0] * size
plt.ticklabel_format(useMathText=False)
for i in range(0, len(data)):
lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
for k, x in enumerate(data[i]):
bottom[k] += x
plt.legend(lines, keys)
plt.title(", ".join(sites))
#plt.show()
dpi=86
plt.savefig("time_rel_{}.png".format(size), dpi=dpi,bbox_inches="tight")
colors = {
"simu": "blue",
"question": "orange",
"image": "green",
"audio": "red",
"video": "purple",
"other": "brown",
"map": "violet",
# "error":"grey"
}
markers = [".", "o", "x", "s", "*", "D", "p", ",", "<", ">", "^", "v", "1", "2", "3", "4"]
def plot_time_space(time_data, space_data, keys):
# assuming time_data and space_data are in same order!
marker = 0
for id in time_data:
for k in keys:
ordered.append(j[k])
results.append(ordered)
results.append(dummy)
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
for i in range(len(time_data[id])):
print(time_data[id][i][k], space_data[id][i][k])
plt.plot(time_data[id][i][k], space_data[id][i][k], color=colors[k], marker=markers[marker])
marker += 1
plt.show()
size = len(results)
ind = np.arange(size)
width=0.9
print(results)
data = list(zip(*results))
print(data)
lines = []
bottom = [0]*len(results)
for i in range(0, len(data)):
lines.append(plt.bar(ind,data[i], bottom=bottom, width=width)[0])
for k,x in enumerate(data[i]):
bottom[k] += x
plt.legend(lines, keys)
plt.title(", ".join(sites))
plt.show()
# plt.cla()
# plt.clf()
# plt.close()
#size = len(results)
#ind = np.arange(size)
#width = 0.9
#print(results)
#data = list(zip(*results))
#print(data)
#lines = []
#bottom = [0] * len(results)
#for i in range(0, len(data)):
# lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
# for k, x in enumerate(data[i]):
# bottom[k] += x
#plt.legend(lines, keys)
#plt.title("Zwei Spiele in Filderstadt (t1=237min; t2=67min)")
#plt.show()
def plot_time_space_rel(combined, keys):
groups = defaultdict(list)
keys = list(keys)
keys.remove("other")
ids = []
for k in keys:
for id in sorted(combined):
if id not in whitelist:
continue
if not id in ids:
ids.append(id)
group = 0.0
count = 0
for item in combined[id]:
if k in item:
time = item[k]["time"]/1000
distance = item[k]["space"]
if time > 0:
group += (distance / time)
count+=1
else:
print("div by zero", distance, time)
if count > 0:
groups[k].append(group/count)
else:
groups[k].append(0.0)
print(ids)
ind = np.arange(len(ids))
width = .7 / len(groups)
print(ind)
print(json.dumps(groups, indent=1))
bars = []
dpi=10
plt.figure(figsize=(1280/dpi, 720/dpi))
fig, ax = plt.subplots()
for k in groups:
print(groups[k])
if not len(groups[k]):
groups[k].append(0)
ind = ind + (width)
bars.append(ax.bar((ind + width*len(groups)/2), groups[k], width, color=colors[k]))
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(list([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids]))
plt.legend(bars, keys)
print(combined.keys(), ids)
print([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids])
#plt.show()
dpi=100
plt.savefig("speed.png", dpi=dpi)
# spatial_data = get_data_distance(store,relative_values=False)
# temporal_data = get_data(store,relative_values=False)
# spatial_data_rel = get_data_distance(store,relative_values=True)
# temporal_data_rel = get_data(store,relative_values=True)
#temporal_data_rel = json.load(open("temporal_rel.json"))
#spatial_data_rel = json.load(open("spatial_rel.json"))
# import IPython
# IPython.embed()
#print(json.dumps(get_all_data(store)))
#json.dump(get_all_data(store), open("combined.json", "w"))
#combined = get_all_data(store, sort=True, relative=True)
#json.dump(combined, open("combined_rel.json", "w"))
#combined = json.load(open("combined_rel.json"))
combined = json.load(open("combined_total.json"))
plot_time_space_rel(combined, keys)
#plot_time_space_rel(temporal_data_rel, spatial_data_rel, keys)
#plot_data(combined, keys)
# plot_data(get_data_distance(store,relative_values=False), keys)
# for analyzers in analyzers:
# if analyzers.name() in ["LogEntryCount", "ActionSequenceAnalyzer"]:

View File

@ -4,4 +4,5 @@ matplotlib==2.1.0
osmnx==0.6
networkx==2.0
pydot==1.2.3
scipy==1.0.0
scipy==1.0.0
ipython==6.2.1