Merge branch 'pag_viz' into merge_activity_pag
commit
e254667256
|
|
@ -52,7 +52,7 @@ __MAPPING__ = {
|
||||||
StoreRender
|
StoreRender
|
||||||
],
|
],
|
||||||
SimulationOrderAnalyzer: [
|
SimulationOrderAnalyzer: [
|
||||||
JSONRender,
|
#JSONRender,
|
||||||
# SimulationOrderRender,
|
# SimulationOrderRender,
|
||||||
SimulationGroupRender
|
SimulationGroupRender
|
||||||
]
|
]
|
||||||
|
|
|
||||||
|
|
@ -52,7 +52,7 @@ class ResultStore:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
result = []
|
result = []
|
||||||
for key in self.store:
|
for key in sorted(self.store):
|
||||||
result += self.store[key]
|
result += self.store[key]
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -204,7 +204,7 @@ class ActivityMapper(Analyzer):
|
||||||
board_data = get_board_data(self.settings.source, self.instance_config_id, entry["sequence_id"],
|
board_data = get_board_data(self.settings.source, self.instance_config_id, entry["sequence_id"],
|
||||||
entry["board_id"])
|
entry["board_id"])
|
||||||
entry["extra_data"] = board_data
|
entry["extra_data"] = board_data
|
||||||
entry["extra_data"]["activity_type"] = self.classify_entry(entry)
|
entry["extra_data"]["activity_type"] = self.last_board_type
|
||||||
entry['coordinate'] = self.new_coordinate()
|
entry['coordinate'] = self.new_coordinate()
|
||||||
self.timeline.append(entry)
|
self.timeline.append(entry)
|
||||||
return False
|
return False
|
||||||
|
|
@ -293,8 +293,8 @@ class InstanceConfig(Analyzer):
|
||||||
print(entry)
|
print(entry)
|
||||||
self.store["instance_id"] = json_path(entry, self.settings.custom["instance_config_id"])
|
self.store["instance_id"] = json_path(entry, self.settings.custom["instance_config_id"])
|
||||||
|
|
||||||
def result(self, store: ResultStore):
|
def result(self, store: ResultStore, name=None):
|
||||||
store.add(Result(type(self), dict(self.store)))
|
store.add(Result(type(self), dict(self.store), name=name))
|
||||||
|
|
||||||
|
|
||||||
class SimulationOrderAnalyzer(Analyzer):
|
class SimulationOrderAnalyzer(Analyzer):
|
||||||
|
|
@ -305,8 +305,8 @@ class SimulationOrderAnalyzer(Analyzer):
|
||||||
self.store = defaultdict(lambda: -1) # TODO verify
|
self.store = defaultdict(lambda: -1) # TODO verify
|
||||||
self.order = []
|
self.order = []
|
||||||
|
|
||||||
def result(self, store: ResultStore) -> None:
|
def result(self, store: ResultStore, name=None) -> None:
|
||||||
store.add(Result(type(self), [self.store[sim] for sim in self.order]))
|
store.add(Result(type(self), [self.store[sim] for sim in self.order], name=name))
|
||||||
|
|
||||||
def process(self, entry: dict) -> bool:
|
def process(self, entry: dict) -> bool:
|
||||||
entry_type = entry[self.settings.type_field]
|
entry_type = entry[self.settings.type_field]
|
||||||
|
|
|
||||||
|
|
@ -186,7 +186,13 @@ class SimulationOrderRender(Render):
|
||||||
|
|
||||||
class SimulationGroupRender(Render):
|
class SimulationGroupRender(Render):
|
||||||
def render(self, results: List[Result], name=None):
|
def render(self, results: List[Result], name=None):
|
||||||
data = [r.get() for r in self.filter(results)]
|
#data = [r.get() for r in self.filter(results)]
|
||||||
|
data = []
|
||||||
|
for r in self.filter(results):
|
||||||
|
raw = r.get()
|
||||||
|
if len(raw) < 6:
|
||||||
|
raw = [0] + raw
|
||||||
|
data.append(raw)
|
||||||
print(name, len(data))
|
print(name, len(data))
|
||||||
# graph_fit(list(data), name=name)
|
# graph_fit(list(data), name=name)
|
||||||
graph_plot(list(data), ylabel="simulation retries", title="sequential simulation retries", rotation=None,
|
graph_plot(list(data), ylabel="simulation retries", title="sequential simulation retries", rotation=None,
|
||||||
|
|
|
||||||
|
|
@ -1,8 +1,13 @@
|
||||||
|
import json
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import analyzers
|
||||||
|
from util.geo import calc_distance
|
||||||
|
|
||||||
|
|
||||||
def time_distribution(store):
|
def time_distribution(store):
|
||||||
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
|
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
|
||||||
from collections import defaultdict
|
|
||||||
import json
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
keys = [
|
keys = [
|
||||||
"simu",
|
"simu",
|
||||||
|
|
@ -70,18 +75,319 @@ def time_distribution(store):
|
||||||
plt.title(", ".join(sites))
|
plt.title(", ".join(sites))
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
# size = len(results)
|
|
||||||
# ind = np.arange(size)
|
# size = len(results)
|
||||||
# width = 0.9
|
# ind = np.arange(size)
|
||||||
|
# width = 0.9
|
||||||
|
# print(results)
|
||||||
|
# data = list(zip(*results))
|
||||||
|
# print(data)
|
||||||
|
# lines = []
|
||||||
|
# bottom = [0] * len(results)
|
||||||
|
# for i in range(0, len(data)):
|
||||||
|
# lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
|
||||||
|
# for k, x in enumerate(data[i]):
|
||||||
|
# bottom[k] += x
|
||||||
|
# plt.legend(lines, keys)
|
||||||
|
# plt.title("Zwei Spiele in Filderstadt (t1=237min; t2=67min)")
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
|
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
|
||||||
|
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from util.meta_temp import CONFIG_NAMES
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"simu",
|
||||||
|
"question",
|
||||||
|
"image",
|
||||||
|
"audio",
|
||||||
|
"video",
|
||||||
|
"other",
|
||||||
|
"map",
|
||||||
|
# "error"
|
||||||
|
]
|
||||||
|
|
||||||
|
loc_keys = [
|
||||||
|
"question",
|
||||||
|
"image",
|
||||||
|
"audio",
|
||||||
|
"video"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_data(store, relative_values=True, sort=True, show_errors=False):
|
||||||
|
places = defaultdict(list)
|
||||||
|
|
||||||
|
for log in store.get_all():
|
||||||
|
if not log.analysis() == analyzers.ActivityMapper:
|
||||||
|
continue
|
||||||
|
result = defaultdict(lambda: 0)
|
||||||
|
for i in log.get()['track']:
|
||||||
|
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
|
||||||
|
result[i['properties']['activity_type']] += duration
|
||||||
|
print(json.dumps(result, indent=4))
|
||||||
|
total = sum(result.values())
|
||||||
|
print(total)
|
||||||
|
percentage = defaultdict(lambda: 0)
|
||||||
|
minutes = defaultdict(lambda: 0)
|
||||||
|
for i in result:
|
||||||
|
percentage[i] = result[i] / total
|
||||||
|
minutes[i] = result[i] / 60_000
|
||||||
|
print(json.dumps(percentage, indent=4))
|
||||||
|
if not 'error' in result or show_errors:
|
||||||
|
if relative_values:
|
||||||
|
places[log.get()['instance']].append(percentage)
|
||||||
|
else:
|
||||||
|
places[log.get()['instance']].append(minutes)
|
||||||
|
if sort:
|
||||||
|
for place in places:
|
||||||
|
places[place] = sorted(places[place], key=lambda item: item['map'])
|
||||||
|
return places
|
||||||
|
|
||||||
|
|
||||||
|
whitelist = ['16fc3117-61db-4f50-b84f-81de6310206f', '5e64ce07-1c16-4d50-ac4e-b3117847ea43',
|
||||||
|
'90278021-4c57-464e-90b1-d603799d07eb', 'ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771']
|
||||||
|
|
||||||
|
|
||||||
|
def get_data_distance(store, relative_values=True, sort=True, show_errors=False):
|
||||||
|
places = defaultdict(list)
|
||||||
|
|
||||||
|
for log in store.get_all():
|
||||||
|
if not log.analysis() == analyzers.ActivityMapper:
|
||||||
|
continue
|
||||||
|
result = defaultdict(lambda: 0)
|
||||||
|
for i in log.get()['track']:
|
||||||
|
coords = i['coordinates']
|
||||||
|
if len(coords) > 1:
|
||||||
|
distance = calc_distance(coords)
|
||||||
|
result[i['properties']['activity_type']] += distance
|
||||||
|
total = sum(result.values())
|
||||||
|
percentage = defaultdict(lambda: 0)
|
||||||
|
for i in result:
|
||||||
|
if not total == 0:
|
||||||
|
percentage[i] = result[i] / total
|
||||||
|
if not 'error' in result or show_errors:
|
||||||
|
if relative_values:
|
||||||
|
places[log.get()['instance']].append(percentage)
|
||||||
|
else:
|
||||||
|
places[log.get()['instance']].append(result)
|
||||||
|
if sort:
|
||||||
|
for place in places:
|
||||||
|
places[place] = sorted(places[place], key=lambda item: item['map'])
|
||||||
|
return places
|
||||||
|
|
||||||
|
|
||||||
|
def get_all_data(store, sort=False, relative=True):
|
||||||
|
places = defaultdict(list)
|
||||||
|
simu_distribution = defaultdict(lambda: 0)
|
||||||
|
# divisiors = {"time":60_000, "space":1000000}
|
||||||
|
for log in store.get_all():
|
||||||
|
if not log.analysis() == analyzers.ActivityMapper:
|
||||||
|
continue
|
||||||
|
result = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
for i in log.get()['track']:
|
||||||
|
coords = i['coordinates']
|
||||||
|
if len(coords) > 1:
|
||||||
|
distance = calc_distance(coords)
|
||||||
|
else:
|
||||||
|
distance = 0.0
|
||||||
|
result["space"][i['properties']['activity_type']] += distance
|
||||||
|
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
|
||||||
|
result["time"][i['properties']['activity_type']] += duration
|
||||||
|
total_space = sum(result["space"].values())
|
||||||
|
total_time = sum(result["time"].values())
|
||||||
|
percentage = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
total = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
for i in result["space"]:
|
||||||
|
if not total_space == 0:
|
||||||
|
percentage[i]["space"] = result["space"][i] / total_space
|
||||||
|
else:
|
||||||
|
percentage[i]["space"] = 0
|
||||||
|
if not total_time == 0:
|
||||||
|
percentage[i]["time"] = result["time"][i] / total_time
|
||||||
|
else:
|
||||||
|
percentage[i]["time"] = 0
|
||||||
|
for t in ("space", "time"):
|
||||||
|
# total[i][t] += (result[t][i] / divisiors[t])
|
||||||
|
total[i][t] += result[t][i]
|
||||||
|
print(percentage)
|
||||||
|
if not 'error' in result:
|
||||||
|
if relative:
|
||||||
|
value = percentage
|
||||||
|
else:
|
||||||
|
value = total
|
||||||
|
places[log.get()['instance']].append(value)
|
||||||
|
simus = defaultdict(lambda: 0)
|
||||||
|
for item in log.get()['boards']:
|
||||||
|
if item["extra_data"]["activity_type"] == "simu":
|
||||||
|
simus[item["board_id"]] += 1
|
||||||
|
simu_distribution[len(simus)] += 1
|
||||||
|
|
||||||
|
if sort:
|
||||||
|
for place in places:
|
||||||
|
places[place] = sorted(places[place], key=lambda item: item['map']['time'])
|
||||||
|
print(simu_distribution)
|
||||||
|
return places
|
||||||
|
|
||||||
|
|
||||||
|
def stack_data(keys, places, type="space"):
|
||||||
|
divisiors = {"time": 60_000, "space": 1000}
|
||||||
|
# divisiors = {"time": 1, "space": 1}
|
||||||
|
dummy = [0] * len(keys)
|
||||||
|
results = []
|
||||||
|
sites = []
|
||||||
|
for i in sorted(places):
|
||||||
|
if not i in whitelist:
|
||||||
|
continue
|
||||||
|
place = sorted(places[i], key=lambda item: item['map'][type])
|
||||||
|
for j in place:
|
||||||
|
ordered = []
|
||||||
|
for k in keys:
|
||||||
|
if k in j:
|
||||||
|
ordered.append(j[k][type] / divisiors[type])
|
||||||
|
else:
|
||||||
|
ordered.append(0)
|
||||||
|
print(sum(ordered))
|
||||||
|
# if sum(ordered) > 0.9 and sum(ordered) < 4000 and sum(ordered)>10:
|
||||||
|
if sum(ordered) > 0.9 and sum(ordered) < 100:
|
||||||
|
# print(sum(ordered), 1-sum(ordered))
|
||||||
|
# if sum(ordered)<1:
|
||||||
|
# ordered[-2] = 1-sum(ordered[:-2], ordered[-1])
|
||||||
|
results.append(ordered)
|
||||||
|
results.append(dummy)
|
||||||
|
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
|
||||||
|
return results, sites
|
||||||
|
|
||||||
|
|
||||||
|
def plot_data(places, keys):
|
||||||
|
results, sites = stack_data(keys, places)
|
||||||
|
dpi = 86.1
|
||||||
|
plt.figure(figsize=(1280 / dpi, 720 / dpi))
|
||||||
|
size = len(results)
|
||||||
|
print("{} elements total".format(size))
|
||||||
|
ind = np.arange(size)
|
||||||
|
width = 1
|
||||||
# print(results)
|
# print(results)
|
||||||
# data = list(zip(*results))
|
data = list(zip(*results))
|
||||||
# print(data)
|
# print(data)
|
||||||
# lines = []
|
lines = []
|
||||||
# bottom = [0] * len(results)
|
bottom = [0] * size
|
||||||
# for i in range(0, len(data)):
|
plt.ticklabel_format(useMathText=False)
|
||||||
# lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
|
for i in range(0, len(data)):
|
||||||
# for k, x in enumerate(data[i]):
|
lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
|
||||||
# bottom[k] += x
|
for k, x in enumerate(data[i]):
|
||||||
# plt.legend(lines, keys)
|
bottom[k] += x
|
||||||
# plt.title("Zwei Spiele in Filderstadt (t1=237min; t2=67min)")
|
plt.legend(lines, keys)
|
||||||
# plt.show()
|
plt.title(", ".join(sites))
|
||||||
|
# plt.show()
|
||||||
|
dpi = 86
|
||||||
|
plt.savefig("space_abs_{}.png".format(size), dpi=dpi, bbox_inches="tight")
|
||||||
|
|
||||||
|
|
||||||
|
colors = {
|
||||||
|
"simu": "blue",
|
||||||
|
"question": "orange",
|
||||||
|
"image": "green",
|
||||||
|
"audio": "red",
|
||||||
|
"video": "purple",
|
||||||
|
"other": "brown",
|
||||||
|
"map": "violet",
|
||||||
|
# "error":"grey",
|
||||||
|
"tasks": "olive",
|
||||||
|
}
|
||||||
|
markers = [".", "o", "x", "s", "*", "D", "p", ",", "<", ">", "^", "v", "1", "2", "3", "4"]
|
||||||
|
|
||||||
|
|
||||||
|
def plot_time_space(time_data, space_data, keys):
|
||||||
|
# assuming time_data and space_data are in same order!
|
||||||
|
marker = 0
|
||||||
|
for id in time_data:
|
||||||
|
for k in keys:
|
||||||
|
for i in range(len(time_data[id])):
|
||||||
|
print(time_data[id][i][k], space_data[id][i][k])
|
||||||
|
plt.plot(time_data[id][i][k], space_data[id][i][k], color=colors[k], marker=markers[marker])
|
||||||
|
marker += 1
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# plt.cla()
|
||||||
|
# plt.clf()
|
||||||
|
# plt.close()
|
||||||
|
|
||||||
|
def group_locationbased_tasks(data):
|
||||||
|
for id in data:
|
||||||
|
for log in data[id]:
|
||||||
|
loc = {"space": 0, "time": 0}
|
||||||
|
for k in log:
|
||||||
|
if k in loc_keys:
|
||||||
|
for i in ["space", "time"]:
|
||||||
|
loc[i] += log[k][i]
|
||||||
|
log["tasks"] = loc
|
||||||
|
|
||||||
|
|
||||||
|
def plot_time_space_rel(combined, keys):
|
||||||
|
groups = defaultdict(list)
|
||||||
|
keys = list(keys)
|
||||||
|
keys.remove("other")
|
||||||
|
for i in loc_keys:
|
||||||
|
keys.remove(i)
|
||||||
|
keys.append("tasks")
|
||||||
|
ids = []
|
||||||
|
group_locationbased_tasks(combined)
|
||||||
|
for k in keys:
|
||||||
|
for id in sorted(combined):
|
||||||
|
if id not in whitelist:
|
||||||
|
continue
|
||||||
|
if not id in ids:
|
||||||
|
ids.append(id)
|
||||||
|
group = 0.0
|
||||||
|
count = 0
|
||||||
|
for item in combined[id]:
|
||||||
|
if k in item:
|
||||||
|
time = item[k]["time"] / 1000
|
||||||
|
distance = item[k]["space"]
|
||||||
|
if time > 0:
|
||||||
|
group += (distance / time)
|
||||||
|
count += 1
|
||||||
|
else:
|
||||||
|
print("div by zero", distance, time)
|
||||||
|
if count > 0:
|
||||||
|
groups[k].append(group / count)
|
||||||
|
else:
|
||||||
|
groups[k].append(0.0)
|
||||||
|
print(ids)
|
||||||
|
ind = np.arange(len(ids))
|
||||||
|
width = .7 / len(groups)
|
||||||
|
print(ind)
|
||||||
|
print(json.dumps(groups, indent=1))
|
||||||
|
bars = []
|
||||||
|
dpi = 200
|
||||||
|
plt.figure(figsize=(1280 / dpi, 720 / dpi))
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
for k in groups:
|
||||||
|
print(groups[k])
|
||||||
|
if not len(groups[k]):
|
||||||
|
groups[k].append(0)
|
||||||
|
ind = ind + (width)
|
||||||
|
bars.append(ax.bar((ind + width * len(groups) / 2), groups[k], width, color=colors[k]))
|
||||||
|
ax.set_xticks(ind + width / 2)
|
||||||
|
ax.set_xticklabels(list([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids]))
|
||||||
|
kmh = plt.hlines((1 / 3.6), 0.3, 4.2, linestyles="dashed", label="1 km/h", linewidths=1)
|
||||||
|
plt.legend(bars + [kmh], keys + [kmh.get_label()])
|
||||||
|
print(combined.keys(), ids)
|
||||||
|
print([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids])
|
||||||
|
# plt.show()
|
||||||
|
dpi = 200
|
||||||
|
plt.savefig("speed2.png", dpi=dpi)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# plot_time_space_rel(temporal_data_rel, spatial_data_rel, keys)
|
||||||
|
|
||||||
|
# plot_data(combined, keys)
|
||||||
|
# plot_data(get_data_distance(store,relative_values=False), keys)
|
||||||
|
|
|
||||||
|
|
@ -13,9 +13,9 @@
|
||||||
],
|
],
|
||||||
"analyzers": {
|
"analyzers": {
|
||||||
"analyzers": [
|
"analyzers": [
|
||||||
"BiogamesCategorizer",
|
"SimulationCategorizer",
|
||||||
"ActivityMapper",
|
"SimulationOrderAnalyzer",
|
||||||
"SimulationFlagsAnalyzer"
|
"ActivityMapper"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"dis":[
|
"dis":[
|
||||||
|
|
|
||||||
|
|
@ -2,17 +2,16 @@ import json
|
||||||
import logging
|
import logging
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
import analyzers
|
import analyzers
|
||||||
from analyzers import get_renderer, Analyzer, render, Store
|
from analyzers import get_renderer, render
|
||||||
from analyzers.analyzer import ResultStore
|
from analyzers.analyzer import ResultStore
|
||||||
from analyzers.analyzer.default import write_logentry_count_csv, write_simulation_flag_csv
|
from analyzers.analyzer.default import write_logentry_count_csv, write_simulation_flag_csv
|
||||||
|
from analyzers.render import wip
|
||||||
from analyzers.render.default import LogEntryCountCSV
|
from analyzers.render.default import LogEntryCountCSV
|
||||||
from analyzers.render.wip import time_distribution
|
from analyzers.render.wip import time_distribution, plot_data
|
||||||
from analyzers.settings import LogSettings, load_settings
|
from analyzers.settings import LogSettings, load_settings
|
||||||
from loaders import LOADERS
|
from loaders import LOADERS
|
||||||
from util.processing import grep, run_analysis
|
from util.processing import grep, run_analysis, src_file
|
||||||
|
|
||||||
logging.basicConfig(format='%(levelname)s %(name)s:%(message)s', level=logging.DEBUG)
|
logging.basicConfig(format='%(levelname)s %(name)s:%(message)s', level=logging.DEBUG)
|
||||||
log: logging.Logger = logging.getLogger(__name__)
|
log: logging.Logger = logging.getLogger(__name__)
|
||||||
|
|
@ -36,6 +35,9 @@ if __name__ == '__main__':
|
||||||
# "91abfd4b31a5562b1c66be37d9",
|
# "91abfd4b31a5562b1c66be37d9",
|
||||||
# "597b704fe9ace475316c345903",
|
# "597b704fe9ace475316c345903",
|
||||||
# "e01a684aa29dff9ddd9705edf8",
|
# "e01a684aa29dff9ddd9705edf8",
|
||||||
|
"597b704fe9ace475316c345903",
|
||||||
|
"e01a684aa29dff9ddd9705edf8",
|
||||||
|
"fbf9d64ae0bdad0de7efa3eec6",
|
||||||
# "fbf9d64ae0bdad0de7efa3eec6",
|
# "fbf9d64ae0bdad0de7efa3eec6",
|
||||||
"fe1331481f85560681f86827ec", # urach
|
"fe1331481f85560681f86827ec", # urach
|
||||||
# "fe1331481f85560681f86827ec"]
|
# "fe1331481f85560681f86827ec"]
|
||||||
|
|
@ -45,18 +47,23 @@ if __name__ == '__main__':
|
||||||
log_ids_gf = grep(["9d11b749c78a57e786bf5c8d28", # filderstadt
|
log_ids_gf = grep(["9d11b749c78a57e786bf5c8d28", # filderstadt
|
||||||
"a192ff420b8bdd899fd28573e2", # eichstätt
|
"a192ff420b8bdd899fd28573e2", # eichstätt
|
||||||
"3a3d994c04b1b1d87168422309", # stadtökologie
|
"3a3d994c04b1b1d87168422309", # stadtökologie
|
||||||
|
"fe1331481f85560681f86827ec", # urach
|
||||||
"96f6d9cc556b42f3b2fec0a2cb7ed36e" # oberelsbach
|
"96f6d9cc556b42f3b2fec0a2cb7ed36e" # oberelsbach
|
||||||
],
|
],
|
||||||
"/home/clemens/git/ma/test/src",
|
"/home/clemens/git/ma/test/src",
|
||||||
settings)
|
settings)
|
||||||
store: ResultStore = run_analysis(log_ids_gf, settings, LOADERS)
|
log_ids = src_file("/home/clemens/git/ma/test/filtered_5_actions")
|
||||||
|
|
||||||
|
#store: ResultStore = run_analysis(log_ids_gf, settings, LOADERS)
|
||||||
|
#store: ResultStore = run_analysis(log_ids, settings, LOADERS)
|
||||||
|
|
||||||
if False:
|
if False:
|
||||||
for r in get_renderer(analyzers.LocomotionActionAnalyzer):
|
for r in get_renderer(analyzers.LocomotionActionAnalyzer):
|
||||||
r().render(store.get_all())
|
r().render(store.get_all())
|
||||||
if False:
|
if False:
|
||||||
render(analyzers.LocationAnalyzer, store.get_all())
|
render(analyzers.LocationAnalyzer, store.get_all())
|
||||||
# print(json.dumps(store.serializable(), indent=1))
|
# print(json.dumps(store.serializable(), indent=1))
|
||||||
if True:
|
if False:
|
||||||
for cat in store.get_categories():
|
for cat in store.get_categories():
|
||||||
render(analyzers.ActivityMapper, store.get_category(cat), name=cat)
|
render(analyzers.ActivityMapper, store.get_category(cat), name=cat)
|
||||||
# render(analyzers.ProgressAnalyzer, store.get_all())
|
# render(analyzers.ProgressAnalyzer, store.get_all())
|
||||||
|
|
@ -75,9 +82,27 @@ if __name__ == '__main__':
|
||||||
write_logentry_count_csv(LogEntryCountCSV, store, render, analyzers)
|
write_logentry_count_csv(LogEntryCountCSV, store, render, analyzers)
|
||||||
if False:
|
if False:
|
||||||
write_simulation_flag_csv(store)
|
write_simulation_flag_csv(store)
|
||||||
|
if False:
|
||||||
|
time_distribution(store)
|
||||||
|
|
||||||
if True:
|
if True:
|
||||||
time_distribution(store)
|
# spatial_data = get_data_distance(store,relative_values=False)
|
||||||
|
# temporal_data = get_data(store,relative_values=False)
|
||||||
|
# spatial_data_rel = get_data_distance(store,relative_values=True)
|
||||||
|
# temporal_data_rel = get_data(store,relative_values=True)
|
||||||
|
# temporal_data_rel = json.load(open("temporal_rel.json"))
|
||||||
|
# spatial_data_rel = json.load(open("spatial_rel.json"))
|
||||||
|
# import IPython
|
||||||
|
# IPython.embed()
|
||||||
|
|
||||||
|
# print(json.dumps(get_all_data(store)))
|
||||||
|
# json.dump(get_all_data(store), open("combined.json", "w"))
|
||||||
|
# combined = get_all_data(store, sort=True, relative=True)
|
||||||
|
# json.dump(combined, open("combined_rel.json", "w"))
|
||||||
|
# combined = json.load(open("combined_rel.json"))
|
||||||
|
combined = json.load(open("combined_total.json"))
|
||||||
|
# plot_time_space_rel(combined, keys)
|
||||||
|
plot_data(combined, wip.keys)
|
||||||
|
|
||||||
|
|
||||||
# for analyzers in analyzers:
|
# for analyzers in analyzers:
|
||||||
|
|
|
||||||
|
|
@ -4,4 +4,5 @@ matplotlib==2.1.0
|
||||||
osmnx==0.6
|
osmnx==0.6
|
||||||
networkx==2.0
|
networkx==2.0
|
||||||
pydot==1.2.3
|
pydot==1.2.3
|
||||||
scipy==1.0.0
|
scipy==1.0.0
|
||||||
|
ipython==6.2.1
|
||||||
|
|
@ -55,3 +55,12 @@ def grep(log_ids, source, settings):
|
||||||
if id in line:
|
if id in line:
|
||||||
logs.append(line.strip())
|
logs.append(line.strip())
|
||||||
return logs
|
return logs
|
||||||
|
|
||||||
|
|
||||||
|
def src_file(filename):
|
||||||
|
log_ids = []
|
||||||
|
with open(filename) as src:
|
||||||
|
for line in src:
|
||||||
|
line = line.strip()
|
||||||
|
log_ids.append(line)
|
||||||
|
return log_ids
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue